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LONG-TERM STABILITY 
OF VARIABLE STEPSIZE APPROXIMATIONS OF SEMIGROUPS 

NIKOLAI BAKAEV AND ALEXANDER OSTERMANN 

ABSTRACT. This paper is concerned with the stability of rational one-step 
approximations of Co semigroups. Particular emphasis is laid on long-term 
stability bounds. The analysis is based on a general Banach space framework 
and allows variable stepsize sequences. Under reasonable assumptions on the 
stepsize sequence, asymptotic stability bounds for general Co semigroups are 
derived. The bounds are typical in the sense that they contain, in general, 
a factor that grows with the number of steps. Under additional hypotheses 
on the approximation, more favorable stability bounds are obtained for the 
subclass of holomorphic semigroups. 

1. INTRODUCTION 

Stability bounds for approximations of linear semigroups play, without doubt, a 
key role in the analysis of discretizations of evolution equations. Consequently, such 
bounds have gained a lot of interest in literature (see, e.g., Bakaev [1], Brenner and 
Thom"e [4], LeRoux [9], Lubich and Nevanlinna [10], and Palencia [13]). Whereas 
these stability bounds apply directly in the analysis of linear equations, their im- 
portance for nonlinear problems relies on the use of perturbation techniques and 
the variation-of-constants formula (cf., e.g., Lubich and Ostermann [11]). 

In the present paper, we are concerned with the long-term behavior of ratio- 
nal approximations to Co and in particular holomorphic semigroups in the case 
of nonuniform time grids. It is well known that the use of nonconstant stepsize 
sequences in the numerical treatment of differential equations may lead to an as- 
ymptotic behavior of the approximate solution which essentially differs from that of 
the exact solution. For systems of ordinary differential equations (linear and non- 
linear) the analysis of asymptotic stability of approximate solutions on nonuniform 
grids is carried out in a paper by Hairer and Zennaro [6]. The results of [6] can 
be applied to the case of linear differential equations in Hilbert spaces with normal 
operators. However, in Banach spaces, the situation is much more complicated and 
a more careful analysis is required. 

It was shown in Bakaev [2] and later in Palencia [13] that, under some reason- 
able restrictions, rational approximations of a bounded holomorphic semigroup are 
uniformly bounded for arbitrary stepsize sequences. For holomorphic semigroups 
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with exponential decay, however, the asymptotic behavior of corresponding approx- 
imations does not seem to have been studied earlier. 

As concerns general Co semigroups, we are also not aware of any work devoted to 
the analysis of approximations on nonuniform grids, particularly not for semigroups 
with exponential decay. However, we have to mention the seminal paper by Brenner 
and Thombe [4], where approximations of Co semigroups with constant time steps 
are examined, and on which our analysis will be based. 

Let E be a Banach space with norm I 
- 11. The symbol If II also denotes the 

operator norm in E. Consider in E the following Cauchy problem 

(1) ut = Au, O < t < 00; u(O) = uo, 
with some linear unbounded operator A acting on E and some initial value u0o E E. 

Our main hypothesis with respect to the operator A will be as follows: 
HA1: The operator A generates a Co semigroup etA, and there are constants L > 0 
and v > 0 such that 

lietA l < Le-'t for all t > 0. 

Hypothesis HA1 allows one to define the mild solution of problem (1) by 

(2) u(t) = etAuo, t ? 0. 

It is well known that HA1 can be replaced by an equivalent condition in terms 
of the resolvent of the operator A (see, e.g., Hille and Phillips [8]) but this is not 
essential for our further needs. Nevertheless, in the last section, we shall encounter 
the following sectorial type restriction on A: 
HA2: The operator A is closed, with dense domain and its resolvent satisfies 

|(zI - A)-1|l 
< Liz + vi-l whenever z C Evy, 

with some L > 0, X E (0, 7r/2), and v > 0, where 

Ex= 
= {z e C: z $ -v, I arg(z + v) < <? - x} U {-v}. 

We note that hypothesis HA2 is more restrictive than HA1 because, if it is fulfilled, 
A generates a holomorphic Co semigroup etA, with 

lietAiI 
< CLe-vt for all t > 0, 

where the constant C depends on X (see, e.g., Lunardi [12, Chapter 2]). 
We next introduce our hypotheses on the rational approximations. Let R(z) 

denote a fixed rational function. We require R(z) to be A(p)-stable, i.e., 
HR1: IR(z) I 1 for all z E C \ E,o, with some op E (0, 7r/2]. 

With the function R(z) we associate the following function 

r((, q) = R(n + i?),, , ~ R, 
and we shall write for brevity, 

r(()= R(i). 
Sometimes we shall use the following additional restrictions on R(z): 

HR2: The number R, = R(oo) satisfies 

SRc < 1; 

HR3: The function r(() fulfils 

Ir(()| < 1 for all ( E R \ {0}; 
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and 
HR4: R(z) approximates ez at z = 0 with order p for some p > 1, that is 

R(z) = ez + O (Iz+l) as z -0. 
It follows from the hypotheses HR2, HR3, and HR4 that 

HR5: The function a(s) = e-iEr(O) satisfies for any fixed d > 0 

Ia()j) < e-cEs whenever I11 < d, 

with some even s > p + 1 and some c > 0 (depending on d). 
However, the size of s is not specified by HR2 - 4 and we prefer to introduce HR5 
as a separate assumption. 

Throughout this paper, we deal with sequences of positive numbers. For brevity, 
we call each such sequence a stepsize sequence. For any stepsize sequence K = 

(kIj)?l, we define the finite stepsize sequence Kn = (k3)n, whose members are 
just the n first members of K. In this case, we write Kn C K. 

For any finite stepsize sequence Kn = (k )jnl, we introduce the operator 

n 

(3) R(Kn; A) = J R(kjA), 
j=1 

which may be thought of as a rational variable stepsize approximation to the semi- 
group etnA with 

tn 
= 

j=l kj. The main aim of the present paper is thus to 
obtain bounds for the quantity IIR(Kn; A) I, under some reasonable restrictions on 
A and R(z) from among those listed above. In particular, we examine the long-term 
behavior of rational methods of the form (3). 

The paper is organized as follows. In Section 2, we consider the case when the 
operator A fulfils HA1 with v = 0 and, therefore, generalize results of Brenner and 
Thom e [4] on stability to the case of variable time steps. Section 3 is devoted to 
the case v > 0 and contains results which allow one to compare the asymptotic 
behavior of the semigroup etA to that of the rational method (3). Our analysis 
in these two sections is based on the Hille-Phillips operator calculus. Finally, in 
Section 4, we examine asymptotic stability in the case of holomorphic semigroups, 
that is when the operator A fulfils HA2 with v > 0. We obtain in this case sharper 
estimates of asymptotic stability. The techniques for showing this are based on the 
Dunford operator calculus in terms of resolvents. 

For our further needs, it is convenient to introduce some additional notation. 
For any given finite stepsize sequence Kn = (k)j=, n > 1, we denote for/3 = A0, 

S,3(K) = kl and My (Kn) - n-1/3S(K). 
/= 1 

As above, instead of S1 (K,), we simply write tn. 
With any finite stepsize sequence K, = (k3j)j, we associate the reordered 

stepsize sequence H. = (hi)jn=, given by hj = k,(j), where the bijection o is 
chosen in a way such that 

hi < ... <h,. 

The finite sequence Hn is called the ordered sequence for Kn. 
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Next let K, = (kj)jl be an arbitrary finite stepsize sequence and let 
Hn 

= 
(hj)jl, be the corresponding ordered stepsize sequence. Let the indices 

l1 < li ... < 1 = n, 
be chosen such that ij, 1 < j 5 p - 1 is the largest index for which 2h1, < hlj+l, and 

2hl > h1. The finite sequence (lj)jl is called the associated sequence of indices 
for K,. 

For any finite stepsize sequence K, = (kj)jn=, we denote 

Sj,o (Kn) - ho= 
1I,.., \l=l 

and 

Mj,f(Kn) = ljls/j,/(Kn), j = 1,... ,, 
where 

(hj)n_1 
is the ordered finite sequence for Kn and (lj)j 1 the associated 

sequence of indices for Kn. 
In the case when K, is specified in the context, we shall often omit the depen- 

dence of Sp, Mp, Sj,,, and Mj,p on Kn. 
For future reference, we recall the following well-known inequalities (for their 

proofs, see, e.g., Hardy, Littlewood, and P6lya [7]) : 

(4) SP2(Kn) ? Sp1 (Kn) for 0 < pr ? 
/-2, 

(5) M2p (Kn) < M02(Kn) for 31 /02. 

Obviously, the inequalities (4) and (5) are valid with Sj,p(Kn) and Mj,p(Kn) sub- 
stituted for Sfp(Kn) and Mf(Kn), respectively. 

Henceforth, we denote by C and c generic constants, subject to C > 0 and 
c > 0, whose sizes are not essential for our analysis. We emphasize that these 
constants depend only on the constants appearing in our hypotheses, except on L. 
The dependence on L will always be given explicitly. 

2. BOUNDED SEMIGROUPS 

In this section, we show how the fundamental results of Brenner and Thomee [4] 
on the stability of rational approximations of semigroups can be extended to the case 
of nonconstant stepsize sequences. Note that for constant stepsizes, the estimates 
(28) and (29) below were obtained already in [4]. 

We begin with some preliminaries. Let A be the set of bounded measures A(t) 
on the real axis R and let A be the set of corresponding Fourier transforms 

(6) (A) = eitedA(t), 
A 

EA. 
0-0 

Endowed with the norm 

= JdAt), -00 

where A and A are connected via (6), the set A becomes a Banach algebra, so that 

(7) [1Tx 2• [ ?1 '2 for allAl,A2 EA. 
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As a generalization of formula (6) to the operator case, Hille and Phillips [8, 
Chapter XV] have constructed a calculus for a certain class of generators of semi- 
groups. Within this framework, they have derived as well an estimate for the norm 
of a function of such an operator (see [8, Theorem 15.2.1]). For further needs, we 
use the following straightforward consequence of this estimate: if a function F(z) 
is holomorphic and bounded in the half-plane Re z < 0 with f () = F(i?) E A, and 
if the operator A fulfils hypothesis HA1 with v = 0 and some L > 0, then 

(8) IlF(A)I1 ?< LLff. 

On the other hand, the quantity [ff can be bounded by Carlson's inequality (cf. 
[4, Lemma 2]): 

(9) [1ff ? 2\/ f| ,1/2 f1112 whenever f, f' E L2. (9) f• 
-< 

x/llflL2 I IL2 EL 

Our analysis below is essentially based on the use of (8) and (9). Let K, = 
(kj)jn= be an arbitrary finite stepsize sequence. Here and elsewhere in this section, 
given Kn, we denote 

n 
P) = 

fJr(k1). 
1=1 

If R(z) fulfils hypothesis HR1 with ? = 7r/2, the function Hln1 R(kiz) is holomor- 
phic and bounded in the half-plane Re z < 0. Further, in this case, as shown in 

[4], r(?) E A, and hence by Lemma 6 in [4], r(k?) E A for any k > 0. Since A is 
a Banach algebra, we conclude that P(() E A. Therefore, as a consequence of (8), 
we obtain 

(10) |IIR(K,; A)II <L P() . 

Together with formula (9), this yields the basis for our subsequent analysis. 
Our first result on stability is as follows: 

Theorem 2.1. Let the operator A and the function R(z) satisfy HA1 with y = 0, 
L > 0 and HR1 with o = 7r/2. Then, for any finite stepsize sequence Kn = 

(kj)jn=l, we have 

(11) IIR(Kn;A)fI < CLe-lnl/2 (M/2(Kn))/(4E+2) for all E (0,1]. 

-M-_(Kn)o) Proof. We shall bound the right-hand side of (10). Let k be an arbitrary positive 
number. For further needs, it is convenient to denote i1 = k1/k and 

n 

P(k; () 
= 

r(l). l=1 

It follows from the above remarks that P(s) E A and hence, by Lemma 6 in [4], 

(12) [[P(()] = [=P(k; •) 
. 

As will be seen below, a suitable bound for the right-hand side of (12) and the 
optimal choice of the parameter k > 0 will lead to the desired estimate (11). 

Let 4(() be a smooth cut-off function satisfying the conditions 

p c( , (),a1) 

12) 

1 > supp b C 
-2,-2 

U 
,( 2 

and E (2-J ) = 1 
ifl|(| 

> 2. 
j=1 
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The existence of such a function is shown in Brenner, Thomee, and Wahlbin [5, 
Lemma 2.1.1]). Denote 

oO 

S(j)-1(2-J,), j=1,2,..., 
and 00() 

= 1 - E (). 
j=1 

Clearly, the family 
(bj)j=0o 

is a partition of unity. By the triangle inequality, we 
can write 

(13) [P(k; ?)] R"mI + E j(() (P(k;() - Rn,)] 
j=0 

For further success, we need the following simple inequalities which are valid for 
all ( E R, 

(14) ir(I)- 
<_ 

1, 

(15) |r() - Roo 

_ 
C(1 + 1)-1, 

and 

(16) 
-r() 

0 C(1 + (l)+-2 

By applying (14) and (15), we find 

|P(k; ) - R 
_1 

Z 1Roo 1'-1 r(i S) - 
Ro•I 

I r(js)1 
1=1 j=l+1 

(17) n 

< C (1 + Kl|l)- for all E R. 
1=1 

The last inequality can be sharpened when taking into account that by (14), 

|P(k; ) - R I < 2 for E IR, 
so that we get instead of (17), 

(18) IP(k; ) - RL I 
_ 

Cmin 1, (1 + a? |)i) 
for all R. 

O= 1 

One can also obtain on the basis of (14) and (16) for all E IR, 

(19) 1=1 ijs 

< C K1 (1 + Kgj)-2 
l=1 

Now, by using (18) and (19) and taking into account how the support of each Oj 
is localized, we get for j > 1, 

() (P(k; )-R 2 R)L ? C2j/2 min (1 +Kl2j)-I) 
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and 

(?•(P(k;) 
- 

R) < C 2-j/2 +2j/2 1 
(+12J)- 

L2 /=1 
so that 

j(() (P(k; )- Rd) 
-• Cj(() (P(k; )- Rn) 

(20) 2 2 

<c (1?+n12j)-1, j>1. 
/=1 

Similarly, we derive as well 

(21) o () (P(k; ) - Rn 2 
and 

d o (L)(P(k;) R? 1 () 
C l )-1/2 

(22) L2nl 

< C 1 + 1/2 

/= 1 

It follows now from the inequality (9) and the estimates (20)-(22) that 

(23) j() (P(k; ) - Rn) < ? C (1 + 12)-/2 

< C2-jE/2kV/2 (S_E)-el/2 

for any j 2 1 and E E (0, 1], and 

(24) 
o() (P(k; ) - Rn ) < C 1 + i 

1/2 

(24) 
+ 

1 

< C(1 + k-1/4 (S112)1/4 

Combining (13), (23), and (24) thus yields for any E E (0, 1], 

[P(k; ()j 
?_ 

C (1 + k-1/4 (S 1/4 

+l-1ke/2 
(S_6)-E/2 

whence after optimization in k and taking into account (12), we get for all E E (0, 1], 

[P() 
l 

c (? + E-1S(1 )e/(4e+2) 

(25) 
= C (1 + E-lnl 1/2 / E/(46+2) 

M, ) 

Observe that, in view of (5), the first term in the parentheses on the right-hand 
side of (25) can be omitted. The desired estimate (11) thus obtains by combining 
this and (10). O 

On the basis of the estimate (11), one can obtain simpler estimates which are 
more convenient for analysis. 
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Corollary 2.1. Under the conditions of Theorem 2.1, for any finite stepsize se- 

quence K, = 
(kj)j-_, 

we have 
3 

ehv 

(26) IIR(Kn; A)II < CL log (1 + +(n))nl/2, 
where 

n(n)= max kl/ min ki. 
1<l<n 1<l<n 

Proof. It follows immediately from (11) that 

(27) IIR(K,; A)II < CLE-lnl/2K(n)E for all EE (0, 1], 

whence setting e = 1/ log(1 + s(n)) implies (26). O 

We call a family T of stepsize sequences quasiuniform, if with K(n) defined as 

above, 

sup K(n) 
_ 

C for any K T. 
Kn CK 

Corollary 2.2. Under the conditions of Theorem 2.1, for any quasiuniform family 
T of stepsize sequences and any Kn C K E T, the following estimate holds 

(28) IIR(Kn; A)|| 
_ 

CLn1/2 

Proof. This is a straightforward consequence of (26). O 

The only restriction on R(z) used in the statement of Theorem 2.1 is hypothesis 
HR1 which is actually the condition of A-stability if R(z) is interpreted as the 

stability function of an approximation method. Now, in order to obtain sharper 
estimates, we make slightly stronger restrictions on R(z). 

Theorem 2.2. Assume that the operator A and the function R(z) satisfy HA1 
with v = 0, L > 0 and HR1 - 5 with 

-o 
= r/2, p > 1, and s > p + 1. Then, for 

any finite stepsize sequence Kn = (kIj)j?, we have 

(29) IIR(Kn; A) II < CLn(1-(p+l)/s)/2 

Proof. In view of (10), it suffices to bound the quantity TP(()]. Let H, be the 
ordered sequence for K, let (lj)?1 be the associated sequence of indices for Kn, 
and let (?() be a smooth cut-off function with supp C 

_ 
[-1, 1] satisfying the 

restriction 
1 

-2 

One can easily check that 

(1 
- V 

(hjj+,?) ) (1-0(hjj) ) = 
I-l- 

(hj)I, j 
-=1,..., 

-1. 

This allows us to use the following identity 

(30) 1 = (h1) + (1 - 4 
(h13+1())p 

(h13() + (1 - ? (hR)), E R. 
j=1 

Further, recalling that a() = e-ier((), denote 

n lj 

Pj()=) 
f r(hq() and Qj(Q) = Jha(hq). 

q=1j+l q=l 
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Noting that 

P(() 
= 

1r(h1), 
l=1 

by the triangle inequality, (7), (30), and Lemma 6 in [4], we get 
p--1 

[3P(()? < Tc (h, ) )Qt() )+ T(1 - 
(htl(, 

?))Pj(?)? 
x(31) j=1 

x (h,r) Qj(E) + [(1 - (hil, ))P(Q)j. 
Our next argument will be essentially based on the following two lemmas: 

Lemma 2.1. Under the conditions of Theorem 2.2, for any finite stepsize sequence 
Kn = (kj)j•, such that ki < ... . kn, we have 

n +a(k( Sp+i(Kn)< 1)/22 
(32) j(kn) 

a(kj) 
C 1 + S 

(Kn) 
j=l _1 

S(K) 
Lemma 2.2. Let K, = 

(kj)jn_ 

be a finite stepsize sequence satisfying ki < ... < 

kn 
and let 1 < a < n be an index such that k, < 2k1. Then, under the conditions 

of Theorem 2.2, we have 

(33) [ (1 - 0(kc,))P(K, ; () < Cn, 
with some fixed 6 E (0, 1). 

The proofs of both lemmas will be given below. 
Now we are ready to complete the proof of Theorem 2.2. Applying Lemmas 2.1 

and 2.2 to (31), we find 

(34) [P() 
< ? C 1 

-+r- 

6 
(S 

) 
Sj,p +1 

)/ 

j=1 
( 

,s )" 
Note that, in view of (5) and since p + 1 < s, we have 

(35) Sj,pl 1/(p+1)-1/s Mj,p+l 1/(p+1)-/s nl/(p)-l/s 
- 1 

Sj,s = lMj,s i 
which yields instead of (34), 

(36) P()] < C(1 n(1-(p+l)/s)/2 n-1) n(1-(p+l)/s)/2 
j=1 

So (29) follows by combining (10) and (36). 

It remains to prove Lemmas 2.1 and 2.2. 

Proof of Lemma 2.1. First of all denote 

Q(()-= 
a c 

. k=1 

Lemma 6 in [4] shows 

(37) {V)(kn) Ja(ki~) = ()Q() 
l=-1 
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It is convenient to denote as well 

Ep=- kns, O>0. 
Clearly, by the assumed restrictions on kl,... , k, and hypothesis HR5, we have 

(38) |P(<)Q() I ? C exp (-c 8e~") . 

Next, since 

a() = e () with 0(() 
= 

O(|?IP+I) 
by the same reasonings and HR4, we find 

(39) 
d-((()Q(()) < Cexp(-cE 1 ) j 1 + 

+'1•IP . < 
s P) 

Now it follows from (38) and (39) that 

(40) II(0)Q(II)L2< cE-1/2 
and 

(41) (()Q()) < C ; 1/2 +1/2 p+ 

SL2s Ssc 

Therefore, since 8, 2 1, by virtue of (40), (41), and (9), we conclude 

[(S)Q(S)+ 
?2 

< C +S (p+l)/2 E)-l 
S<C ' 

which, in view of (37), directly leads to (32). 

Proof of Lemma 2.2. First denote ,j = kj /k, and 

(Pj f) = 1i( ). 
/--1 

Next observe that, by Lemma 6 in [4], 

Sn (42) (1 - (ko,)) fi r(ki) = [ (1 - ())Pn() 
.-1=1 

Further, by the identity 
n 

Pn(() = Rn-3 (r (sc() - Ro)Pj-(() + R , 
j=1 

and the triangle inequality, we obtain 
n 

(43) j3= 
x (1 - ()) (r (Kj) - Ro) 

P_ 
(j ) . 

Note that by our assumptions, 
1 

(44) 
_ 

2, j -= 1,...,n, 
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and, in view of HR2 and HR3, there exists 61 E (0, 1) such that 

(45) |r()j 5 61 for (1 > 1. -4 
Using (15), (44), and (45), we get 

(46) (1 - ()) (r(j) 
- 

Roo)Pyj-l()I 
< C6 (1 + ?jl)- 

Applying the same argument together with (16) yields 

(47) 

<C6• ((1 
+ 

j[)-I 
+ 

l 
(1 + 

•t[•l)-2) 
On the basis of (46) and (47), we derive 

(48) p( - 
9(?)) (r (Kj() 

- Roo) P-1( ) 2 F -1/2 - - - 
< 

C5•i 
and 

(1 - ()) (r(j) - Roo)Pj-1() 
2 

(49) 
< 

) 
1 + 1/ 

• 
2 /2 Cj (; 1/2 + 

j 
/2 

/=1 

Using (48), (49), and (9), and taking into account (44), we find 

(50) (1- ())(r(j) 
- 

Roo)Pj-l() ( +j)1/2 < C1/2 

Inserting (50) into (43) yields 
n 

(51) (1- ())Pn() C -j1l/2 IRCln-j + IRooln < C , 
j=1 

with some 6 E (61, 1), whence (33) obtains in view of (42). O 

3. SEMIGROUPS WITH EXPONENTIAL DECAY 

In this section, we study asymptotic properties of rational approximations to 
Co semigroups with exponential decay. In other words, we assume that hypothesis 
HA1 is fulfilled with v > 0. 

For our further needs, it is convenient to introduce the shifted operator 

B = A + vI. 

This operator generates a bounded semigroup etB satisfying 

IletBII 
< L for all t > 0. 

Therefore, the operator B fulfils hypothesis HA1 with v - 0 and one can use 
the Hille-Phillips operator calculus in terms of B. Assume that the function R(z) 
satisfies HR1 with ?p = 7r/2. Using the same reasonings that lead to (10) for the 
operator B instead of A, we obtain for any finite stepsize sequence Kn = (kj)jnl, 

(52) IIR(Kn; A)II = IIR(Kn; B - vI) 11 L 
r(ki• -kiv) . 

/=1 
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The last inequality will be of essential use in the sequel. 
Now we can state our results on asymptotic stability. 

Theorem 3.1. Let the operator A and the function R(z) satisfy the hypotheses 
HA1 with L > O, v > 0, and HR1- 5 with p = rr/2 and p > 1, s > p + l. Let 

further T be the set of stepsize sequences satisfying the restriction 

kj 
_ 

n, j = 1, 2,... for any 
(kj)'_ 

e 7, 

with some fixed K > 0. Then, if nu > 0 is sufficiently small, there exists w E (0, v] 
such that for any Kn C K E T, 

(53) IIR(Kn; A)]] 
_ 

CLe-wt"n(1-(p+l)/s)/2 

Moreover, for n > 0 sufficiently small, w can be chosen as close to v as desired. 

Proof. In view of (52), it suffices to bound the quantity 

(54) r 
(kj(, -kj/) . 

j--1 

Let H, = (hj)j?1_ be the ordered sequence for K, and let (lj)j=1 be the associated 

sequence of indices for K,. As above, when bounding (54), the finite sequence 
K, - (kj)jn= in (54) can be replaced by H,. 

Next let 0(() be a smooth cut-off function such that for some fixed 0 < p < 1, 

supp C [-p, p] and (() = 1 for 
-<1 - 22 

Below we shall use some reasonings applied in the proof of Theorem 2.2, where we 
introduced b(() in just the same way as above but with p = 1. 

Further, denote 

a((, rl) = e-igr((, l). 
Similarly to (31), we have 

r(hil, -hiv) j (hj () a(h?, -hjv) 

P-1 /n 
+ (1 -(- (hij+?)) Jr(hl, -hiv) 

(55) 
j==j1+1 

x (1-(h() 
a(hhi, 

-hiv) 

n 

+ (1 
- 

0(h11 
)) r (hil-hil,) 1= 1 

Using the same argument as in the proof of Lemma 2.2, we obtain (taking lo = 0) 

(56) (1 - (hjl )) f r(hl(, -hlv) 
J Cn-lj, j = 0,... ,O - 1, 

l=lj +1 

with some fixed 6 E (0, 1). 
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In order to bound the quantities 

0(hli 3)f a(hjl, -hlv) 
/--1=1_ 

we denote rj,q = hq/hlj and 

1i 

Qj () -= a(nj,qq,-hqV), 
q=1 

and use the identity (see Lemma 6 in Brenner and Thomee [4]) 
l 
j 

(57) # (hlja) a(hl 
'-hl 

v) 
- 

0(4)Qj(4) 
. 1=L1 

Further, by HR4 - 5 we have 

(58) R(z) = ezeO(), 
where 

(59) O(z) -O (IzIP+1) as z -0, 
and 

(60) Red(i?) < -c' for I p. 
Using the expansion 

09 (iij,q? - hqv) = 0 (ikj,q~) - hquO' (iij,q5 - (q) , q 1, . 
, lj, 

with some (q E (0, hqv), and taking into account (59) and (60), we conclude that 
for all I H p, 

6 exp (d(inj,q( - hqu)) 
_ 

exp 
(d(inj,,q))I 

exp (ChqVinij,q - q|lp) (61) 

_ 
exp 

(-cr(,.,) 
exp (Ch,1(p' + (,)l)), q = 1,..., lj. 

Therefore, choosing p > 0 sufficiently small, we obtain by (58) and (61), with 

nv > 0 sufficiently small for all (J < p, 

la (Kjsq, -hqV)j < exp (-hqu - 
CIjqK 8 + Chqu (pP + (rn)P)) 

(62) p (+hqw - c,)+, q 1,... ,, 
< exp 

(-hqo31 
- 

CK-9j,q• 
), q 1- 1, lj, 

where w1 E (0, v) can be chosen as close to v as desired. Applying (59), (61), and 
the above argument, we derive as well, with p > 0 and iv > 0 sufficiently small, 
for all II ? p, 

d 

(63) 
a 

(j,q, -hq) 
exp 

(-hqwl 
- cij,q~S) 1j,q liigj,q - hql/lp 

(63) d ( 

exp (-h - (+ + i 
(hq) 

, 1, 

_ 
qWl - cIsj,qs ) jj,q IV+ j,q v)) , q =1,..lj 

where wl is just the same as in (62). Denoting 

Oj,p , > 

• 
hij 

and using (62) and (63), we find 

(64) I(~)() Qj• I < exp (-Sj,lwl - ce),s1S) , 
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and 

d( 6 
()Qj()) 

< C exp (- 
S,~lw 

- ce),, 
S() 

+ C exp (-Sj,lwl - cE,) p+1 + 

It follows from (64) and (65) that 

(66) II()& 
j()IIL2 

<- 
ce-S•,•' 

l-1/2 

and 
/ ,SP+ 1 p 

d-b(o(,) Qj() 
<0Ce-sj,•,w7 

1/2 

+h 
(67) L 

2 

- 

3,18 h1 J 
+ 

ce Sj,1W 
(Sjp+l ) 1/2 +G 

? Sj,s O,. 
Since Oj,8, 1, we get by (9), (66), and (67), 

( ( c 1 + 
,+l ? + Sj,p+l +l1 

(P-, l hj S1j,/2 

(8 Ce-sjlwl 

+,p+ 

+ 
(/. 

In view of (4), we have 

Sj,s ? Sjp+l < Sj,1 
This yields 

<()&Qj(()D Ce-sj,~w 1( + 
Sj :;j,; 

+ 
,p1/2 

S)(p+l)/2 (69) < Ce-sjlw1 
sPl)1/2Sj,p+l jSj, 

< Ce-Sj 

lw JP+ I 

(p+l)/2 

( Sils , 
where w E (0, wi) can be chosen as close to wl, and hence to v, as desired. It is 
convenient to denote 

m = (1 - (p + 1)/s)/2. 

Together, (69) and (35) yield 

(70) [O(()Qj(()? < Ce-s,lwnm, j 
= 

1,... , p. 
Therefore, by combining (55), (56), (57), and (70), we get 

(71) r(h~1 , -hiv) < Cnm e-s ,"un-lj + Csn. 
_=1 j=l1 

Select some 61 E (6, 1). Clearly, for nv > 0 sufficiently small, we have 

(72) 6n-lj < ev("Ilj) < 
e•v(tn--Sj,) 

< e-w(t-S,) = 1... 
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and thus 

(73) Zesj=lwlnj ?< n-ljZ=1 n-e(< ewr. 
j=1 j=1 

Since 

jn <e-- nv < e--wtn 

it follows from (71) and (73) that 

(74) r(h3j, 
-hiv) < 

Cnme-wt, 
j=l1 

which concludes the proof. O 

If the stepsize sequence is not uniformly bounded, an exponential factor as in (53) 
cannot be expected. This is easily seen by an example: take A = -1 and consider 
the backward Euler approximations with stepsizes 

kn 
= 2". In this situation, an 

exponential bound with positive w does not hold. 
In order to show algebraic decay, we formulate the following condition on the 

family of stepsize sequences T: 
HS1: There exists Q > 1 such that for any Kn C K E T, 

(75) tn <5 CQ", 

and 

(76) tn 
? CQn"-j hi, j= 1,... ,n, 

1=1 

where Hn = 
(hj)>j=l 

is the ordered sequence for Kn. 

Example. Let Q > 1 and let T be a set of stepsize sequences satisfying 

kn < kn+1 &?Qkn, n = 1, 2,..., and kl < C. 

Then, T satisfies HS1 with a constant C that depends on Q and on the bound of 
the first step 

kl. 
This follows from 

tn = tj + E ki 1+ Q (Q"- -1) tj Q QQn-tj , 

1=j+I 
which shows (76), as well as from 

n--l 

tn < k Q-Ql1<1Qn 

which implies (75). 

Theorem 3.2. Let the operator A and the function R(z) satisfy the hypotheses 
HA1 with v > 0 and L > 0, and HR1 - 5 with ?p = ,r/2 and p 1, s p + l. Let 
T be a set of stepsize sequences satisfying HS1 and let a > 0 be such that 

(77) Q'C (1, 
IRoo->). 

Then, for any Kn C K E T, we have the estimate 

(78) IIR(Kn; A)II 1< CL n(1-(p+1)/s)/2(1 + t) -1. 
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Note that for methods with R, = 0, e.g., for the Radau methods, the value of 
a is not restricted by (77) and can be chosen as large as desired. 

The proof of this theorem is based on the following lemma: 

Lemma 3.1. Assume that the function R(z) satisfies the conditions of Theorem 
3.2. Let Kn be any finite stepsize sequence such that 

v min(kl,..., 
kn) 

! ^o > 0. 

Then 
n 

r(k1- , -kjv) < On3/ 
j=1 

where 

6o = sup IR(z)I < 1. 
Re z < -yo 

Proof. It suffices to prove the lemma with 
Hn 

substituted for Kn, where Hn = 
(hj)jn, is the ordered sequence for K,. We fix 1 < j < n and denote 

rj () = r(h (, -hjv) - Roo, 
and 

PJ(?)= fJr(hll, -h=v). 
1=1 

Under the assumed restrictions, we have 

(79) Ir(hj(, -hjv)l < 5o for all E R. 

Next, using the estimate (79) and the inequalities 

Irj()j < Cmin (3o, (1 + hj I)-1) , 

and 

drj( ) < Chj(1 
+ 

hjjI)-,1 
we get 

(80) 
rj(()Pjl(() 

< C(1 + hjj ()-lJ, 
and 

(81) 
-(rj()Pj()) 

< C6 hq(1 + hqj )-1. 
q=l1 

It follows from (80) and (81) that 

Ilrj(?)Pjl()IL 
L2 OChj 

2, 

and 

2 q=C6 h < 3L2 q=1 
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whence by (9), 

r ( <C•j1 
< C1/2 

o 
q=11 

On the basis of the last estimate, we find 

-n n 

n 

Sr(hl, -hiv) 
< 

1Ro| n-Jrj(_)P_()1(?) 
+ TRn 

(82) J=lJ 

< 
CE Ij1/2 

IRoOIn-j + IRon 
I 

Cn3/2 
6S, 

j=1 

which concludes the proof. O 

Proof of Theorem 3.2. Let K E T and let Kn C K. It suffices to show the result 
for the ordered sequence H, = (hj)n1 substituted for K,. 

Let 60 be any fixed number such that 60o E (IRool, Q-), with Q given in HS1. 
Given n, let j, be the index such that 

(83) 
hiv 

< o, j 1,... ,n, 
and 

(84) hjy v > o, j = jn + 1,..., n, 

where yo > 0 is chosen such that 

(85) sup IR(z)l = 6o. 
Re z<--yo 

We therefore have 

jn= 
j3n n + 

(86) ] 
r(hj?, 

-hjv) fl r 
r(hj?,-hjy) 

1 r (hj , hj v) 
j=l j=l-j=jn+l 

By (84), (85), and Lemma 3.1, we find 

(87) 
r(h3y, 

-hjv) 
? C(nr - j)3/25n-jn 

In order to bound the first factor on the right-hand side of (86), we assume for a 
moment that -yo > 0 is sufficiently small. If this is the case, the argument leading 
to the estimate (74) yields with some w > 0, 

in hr 
(88) f 

r(hj(, 
-hjyv) Cj e-"Wjn 

where m = (1 - (p + 1)/s)/2 and 
'jn 

Z= En hj. If "yo is not sufficiently small, 
noting that both factors on the right-hand side of (86) are estimated independently, 
and reducing, if necessary, v > 0 in HA1, we can nevertheless, for the estimation 
of the first factor, consider hijv > 0, j = 1,... *,j, to be sufficiently small. This 
means that (88) is valid for any yo > 0. Combining (52), (86), (87), and (88) thus 
yields 

(89) IIR(Hn; A)II < CL(n -)J,)3/2on-j0nn 
• ,O 
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and since 60Q' < 1, 

(90) IR(H,; A)II ? CL(n - jn)3/2 (0Q,)n-in Q-(n-jn)anme-w n 
(90) 

< CLQ-(n-j,)onme- 
•. Finally, in view of (76) and (75), 

Q-(-) ? c(1 + 7) (1 + t , 
and it follows from (90) that 

IR(H,;A)<I CLn'm(1 + t)-w (1 + 
_CLnm 

( + t) , _~ 

o 

,)-•• 
<; CInm( +tnj- 

which concludes the proof. EO 

Theorem 3.3. Let the operator A and the function R(z) fulfil the hypotheses HA1 
with some L > 0 and v > 0, and HR1 - 5 with ~ = r/2 and s = p + 1. Then, for 
any stepsize sequence K = (k j)'=1 such that tn -+ 00 as n - oo, we have 

(91) IIR(Kn;A)I1 0 as n 
•-+o. 

Proof. Note that formula (89) is proved without any restrictions on K = (kj)j,1. 
So far as s = p + 1, (89) implies with some 60 o (0, 1) and w > 0, for any finite 

sequence Kn, 

(92) IIR(Kn; A)1II ? CL(n - jn)6n-n e-Wr, 
where jn and Tj, are just the same as in the proof of Theorem 3.2. 

We have only two possibilities: either rj, tends to oo or rj, remains bounded. 
In the first case, (92) straightforwardly implies (91). We thus concentrate on the 
second case. By the definition of jn, the assumption that n - jn < C yields 

t, - 7Tj C, 
and since t, tends to infinity, we come to a contradiction. Therefore, 

lim (n- in) = 00, 
n---oo 

and using (92) again immediately leads to (91). O 

4. HOLOMORPHIC SEMIGROUPS 

The factor n(1-(p+1)/s)/2, appearing in the estimates (53) and (78), plays a 
harmful role in the asymptotic behavior of discretizations. It is absent only in the 
case s = p + 1, which is a severe restriction on the possible choice of discretizations. 
A noteworthy exception satisfying s = p + 1, however, are the Radau methods, i.e., 
the first subdiagonal Padd approximations to the exponential function. 

In this section, we show that approximations to holomorphic semigroups possess 
better asymptotic properties in the sense that no factor, growing with n, appears 
in stability estimates. Note that our techniques require IR, I < 1, which excludes, 
for example, the Gauss methods. 

Theorem 4.1. Let the operator A and the function R(z) fulfil the hypotheses HA2 
with v > 0, L > 0, X E (0, rr/2) and HR1, HR2, HR4 with p X, and p 2 1. Let 

further T be the set of stepsize sequences satisfying the restriction 

kj < K, j = 1,2,... for any 
(kj),=l 

E T, 
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with some fixed , > 0. Then, if nv > 0 is sufficiently small, there exists an 
w E (0, v] such that for any Kn C K E T, 

(93) IR(K,; A)| < CLe-"t. Moreover w can be chosen such that w > v(1 - c - (nv)P), with c > 0. 

Proof. Our argument is close to that applied in the proof of Lemma 3.1 in [3]. 
Noting, as above, that it suffices to show (93) with H, substituted for Kn, where 
H, is the ordered sequence for K,, we start with the identity 

n j-1 

(94) 
R(Hn; 

A) = R- (R(hjA) 
- 

RI) R(hiA) + RnI. 
j=1 1=1 

Denote 

7j = Zhl, 
/=1 

and assume for a moment that we have already shown the following estimate 
j-1 

(95) (R(hjA)- RooI) HR(hA) ? CLe- , j = 1,... ,n, 
1=1 

with w/v = 1 + O((nv)P). Then (94) and (95) imply 
n 

IIR(Hn; A)IJ ? CL EIRIn-je-wr 
+- IRI•, j=1 

and, for iv > 0 sufficiently small, the same reasoning as in the proof of Theorem 3.1 
leads immediately to (93). 

Therefore it remains to prove (95). In order to do this, we use the Dunford-Taylor 
operator calculus (see, e.g., Hille and Phillips [8]). We select constants D > d > 0 
with d such that the disc Izi < d contains no poles of R(z). 

Let the contour (j) be given by 

F(j) = 
{zEC": larg(z + v)l 7r-x, jz+vi =d/Tj} 
U {z C : arg(z + v) = ?(r - X), d/~-j < Iz + vI D/hj} 
U {z E C: arg(z + v)= 

-?(ir- X), D/hj < Iz + vI < oo} 
= FJ) Uj)Urj , j= 1,... ,n, 

r~j) 
2j)j 

r]Pjj 

3 

FIGURE 1. The used path of integration. 
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and be oriented counter-clockwise, see Figure 1. For q = 1, 2, 3, let 

(96) - 
i I ( h - h ()j-1 

(96) Iq R2?rh - ? R,,) fJ R(hiz) (zI - 
A)-<dz. 

q17(j)11 

We have the representation 
j-1 

(97) (R(hjA) I 
- R l R(hA) = I, + 12 +1 3.1 

Note that by HR4, 

(98) R(z) = eze9(z) with O(z) = 0 (Iz|p+') as z -+ 0. 

It is seen from (98) that for sv > 0 and d > 0 sufficiently small, 

(99) IR(-hiv + z)l ~ 
le-hlv+zl ele(-hlv+z)I ? e-whleclzI for IzI d, 

with w/v = 1 + O((,v)P). With this in mind, we have by HA2, 

(100) |1 <CLe-w-riJ 
eClz+vlrjlz 

+ v|-|dzi ?< CLe-"j 
1~j 

Next, applying (98) once more, we find for av and D sufficiently small, 

(101) R( -hv+ 
xe?i( 

-x)) <e-h'w-~ 
x 

= 1,...,j, 
for all 0 < x < D, where w/v = 1 + (((Kv)P). In view of HR2, however, (101) is 
valid with any fixed D > 0 if , v > 0 is sufficiently small. Using this fact and the 

simple inequality 

1 Ce-hjw-chjx for 0 < x < D/hj, 

we find by HA2, 

D/hj 

(102) 1211 < CLe-w J e-cTxx-ldx <CLe"' 

d/rj 

for 
i• 

> 0 sufficiently small, with the same w as above. 
Finally, it follows from (101) and HR2 that for iv > 0 sufficiently small, 

IR(hiz)< - ', =- 1,... ,j- 1 for z E 3 

Combined with the evident inequality 

IR(hyz) - R,, ? Ce-"h(1 + hjlz + v)-1 for z E 
3, 

this yields by HA2, 
oo 

(103) 1|13 11< 
CLe-w• 

/ (1 + hjx)-lx-dx < CLe-"ij 
D/hj 

Now, since IRo ? e-"" for iw > 0 sufficiently small, altogether (97), (100), 
(102), and (103) imply (95). This completes the proof. D 
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Remark 4.1. If in the statement of Theorem 4.1, iv > 0 is not sufficiently small, 
one can achieve this by reducing v in HA1. Therefore, the above argument shows 
that in this case, the estimate (93) is still valid with some w E (0, v) not necessarily 
close to the original v. 

Theorem 4.2. Let the operator A and the function R(z) fulfil the hypotheses HA2 
with v > 0, L > O, X E (0, 7r/2) and HR1, HR2, HR4 with op 2 X, p 2 1. Let T 
be a set of stepsize sequences satisfying hypothesis HS1 and let a > 0 be such that 
(77) holds. Then for any K, C K E T, 

(104) IIR(Kn; A)1 1 < CL(1 + t)-1. 
We remark again that for methods with R, = 0, the number a > 0 in (104) can 

be chosen as large as desired. 

Proof. As above, it suffices to show (104) with H, in place of K.n, where H, is the 
ordered sequence for K,. 

Let -yo be a fixed positive number. Given n, let 
jn 

be the index defined by (83) 
and (84). Further let the numbers Tj, d, D and the contour Fr() be just the same 
as in the proof of Theorem 4.1. We choose yo sufficiently large to achieve that 

6o = sup JR(z)j < Q-, Re zI- yo+d 

with Q given by HS1. Our proof of (104) is based on the identity 

R(H,;A)- E RO-i -1(R(hyA)-RI) 
(105) j=jn+l 

Si R(hiA) 7 R(hqA) + Rn- 1 R(hqA). 
I=j+1 q=l q=1 

Let the contours If(), q) , q 1, 2, 3 coincide with the contours F(J), f() ,Iq 
1, 2, 3, respectively, with 

-j, + hj substituted for Tj. We have the representation for 
j = jn + 1, ... ,n, 

(R(hjA)] - f I) R(hiA)7 R(hqA) 

(106) q 

i (R(hz) - R oo R(hiz) 1R(hqz) (zI- A)-ldz. 
(-i) I= j+l q= 1 

In a manner similar to that used in the proof of Theorem 4.1, we get with some 
w C (0, V] sufficiently small, 

e-whleCIz+vlhl if z ji) 
(107) |R(hz)| ? 

e-whze-clz+vlhl if z E fj) 
e-whl if z e ) xE r3 

for 1= 1,... , j, and 

C if z ej), 
(108) IR(hjz) - RooI < Ce-clz+vlhj 

if z 
() 

C(1 +hjz + v)-1 if z E 
, 
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for j = jn + 1,... , n. Moreover, we have 

(109) IR(hjz)l I Jo, z E F(j), j = n + 1,... ,n. 

By (107)-(109) and the argument applied in the proof of Theorem 4.1, it follows 
from (106) that for j = j, + 1,..., n, 

(110) (R(h A) 
- R 

11) R(h A) Jh R(hA) ? 

CL6n-j+le-Wjn" 
1=j+1 q=1 

By Remark 4.1, we obtain as well 

(111) 1 R(hqA) < CLe-"'n, 
q=1 

where without loss of generality we can assume w to be just the same as in (110). 
In view of the inequality IR, I 

06o, 
combining (105), (110), and (111) thus yields 

(112) IIR(Hn; A)II ? CL(n - 
jin)56n-je-W , 

and since 60Q' < 1, 

(113) IIR(H,; A)II < CLQ-(n-jn)ae-Uj . 

It remains, as in the proof of Theorem 3.2, to combine this with (76) and (75). O 

Theorem 4.3. Let the operator A and the function R(z) satisfy the conditions of 
Theorem 4.2. If K = (kj)'o=1 is a stepsize sequence for which lim tn = 00, then n--+oo 

(114) lim IIR(Kn; A) II= 0. 
n-- oo 

Proof. Note that the estimate (112) is obtained without any restrictions on the 
stepsize sequence. Therefore, the result follows by using the same argument as in 
the proof of Theorem 3.3. Ol 

Acknowledgments. Figure 1 was prepared with the help of the Geneva Group 
Graphics package GGGraphics. We are grateful to Ernst Hairer for introducing us 
to this package. 
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